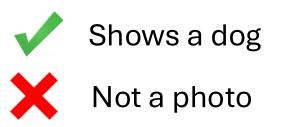
# Evaluating Text-to-Image Models

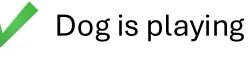
Shobhita Sundaram

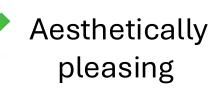
#### "Generate a photo of a dog playing outside"

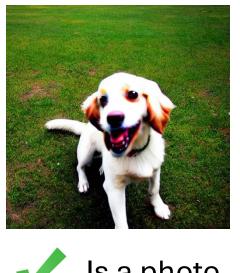


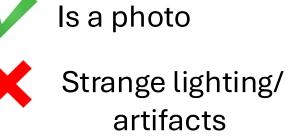






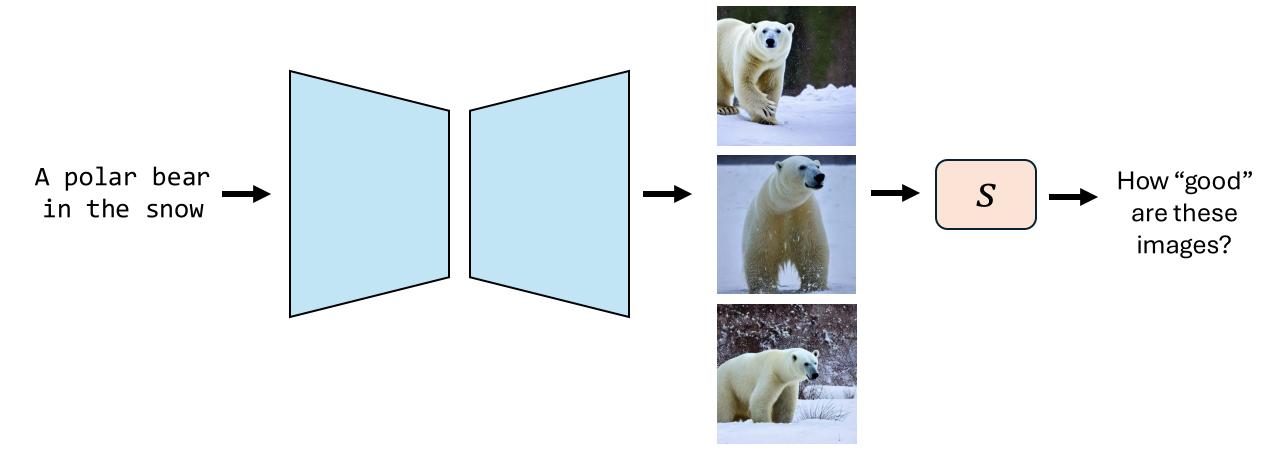






How do we evaluate generative models and their outputs?

# Evaluating T2I models



# Agenda

- What are the current image evaluation metrics?
- What are the best/most popular metrics for T2I models?
- How do you design a good evaluation metric that reflects human preferences?

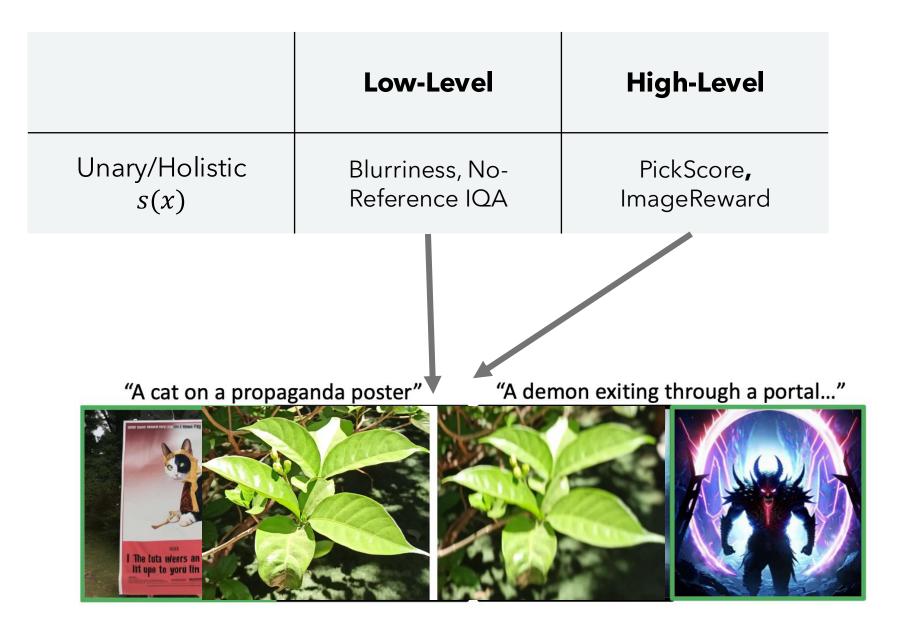


#### What are the current image evaluation metrics?

- What are the best/most popular metrics for T2I models?
- How do you design a good evaluation metric that reflects human preferences?

# What are the tools for image evaluation?

|                                                      | Low-Level                        | High-Level                |
|------------------------------------------------------|----------------------------------|---------------------------|
| Unary/Holistic<br>s(x)                               | Blurriness, No-<br>Reference IQA | PickScore,<br>ImageReward |
| Image Similarity<br>s(x, x <sub>ref</sub> )          | PSNR, SSIM, LPIPS,<br>DISTS      | DreamSim                  |
| Distribution<br>$s(p(x)); s(p(x), p_{ref})$          | InceptionScore, FID, CMMD        |                           |
| Cross-Modal<br>Similarity<br>s(x, y <sub>ref</sub> ) | SOA, CLIPScore                   |                           |



# Agenda

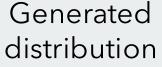
- What are the current image evaluation metrics?
- What are the best/most popular metrics for T2I models?
- How do you design a good evaluation metric that reflects human preferences?

|                                           | Low-Level                        | High-Level                |
|-------------------------------------------|----------------------------------|---------------------------|
| Unary/Holistic<br>s(x)                    | Blurriness, No-<br>Reference IQA | PickScore,<br>ImageReward |
| Similarity $s(x, x_{ref})$                | PSNR, SSIM, LPIPS,<br>DISTS      | DreamSim                  |
| Distribution $s(p(x), p_{ref})$           | FID, InceptionScore, CMMD        |                           |
| Text-Alignment<br>s(x, y <sub>ref</sub> ) | SOA, CLIPScore                   |                           |

# Why compare image distributions?

| Caption                                                                        | Generated Image | Real Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A shoe rack with<br>some shoes and a dog<br>sleeping on them.                  |                 | Tenderson and the second |
| Bunk bed with a<br>narrow shelf sitting<br>underneath it                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A table full of food<br>such as peas and<br>carrots, bread,<br>salad and gravy |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |







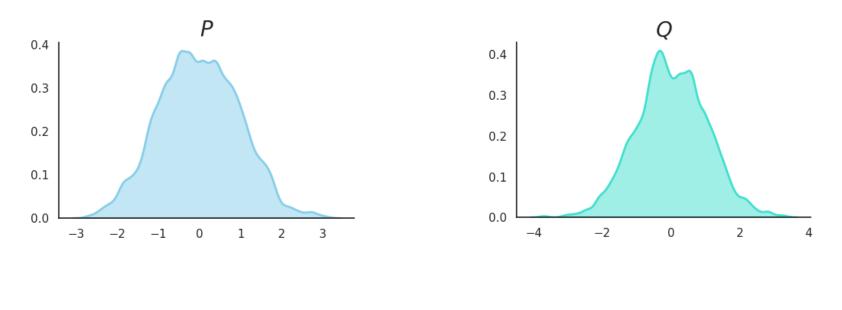




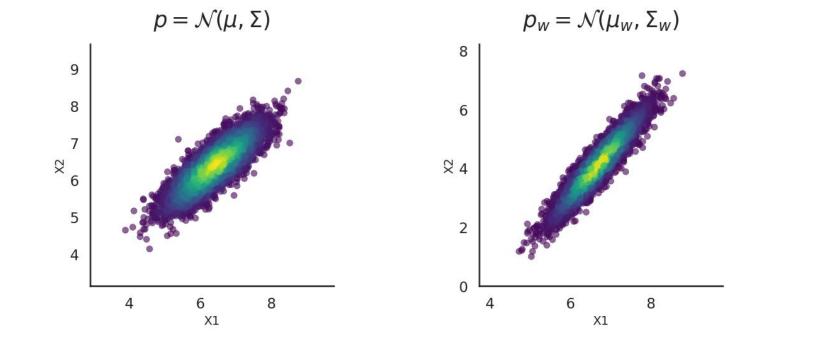
Generated distribution

Real distribution

#### Fréchet Distance (= Wasserstein-2 Distance)



$$W_2^2(P,Q) = \inf_{\gamma \in \Gamma(P,Q)} \mathbb{E}_{(X,Y) \sim \gamma} \left[ \|X-Y\|_2^2 
ight]$$



$$d_F(\mathcal{N}(\mu,\Sigma),\mathcal{N}(\mu_w,\Sigma_w)) = \|\mu-\mu_w\|_2^2 + \mathrm{Tr}\left(\Sigma+\Sigma_w-2(\Sigma^{1/2}\Sigma_w\Sigma^{1/2})^{1/2}
ight)$$

#### **Fréchet Distance between Multivariate Gaussians**

# Fréchet Inception Distance (FID)

• Fréchet distance between Inception V3 embeddings of our real and generated images.

#### Advantages:

- Comparing images embedded in a meaningful representation space
- Sensitive to both quality and diversity
- Some GAN studies have shown correlation with human judgements<sup>1,2,3</sup>

1. Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In *Proc. NIPS*, 2017.

2. Weinberger. An Empirical Study on Evaluation Metrics of Generative Adversarial Networks

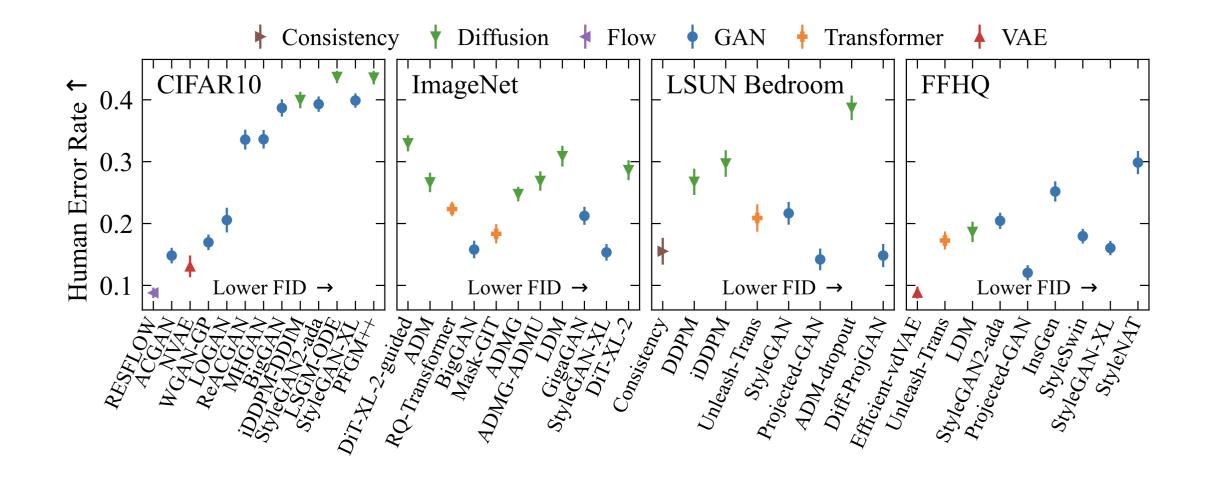
3. Mario Lucic, Karol Kurach, Marcin Michalski, S. Gelly, and O. Bousquet. Are GANs Created Equal? A Large-Scale Study. In Proc. NeurIPS, 2018.

# Fréchet Inception Distance (FID)

• Fréchet distance between Inception V3 embeddings of our real and generated images.

#### Disadvantages

- InceptionV3 only trained on ImageNet (~1M images)
- Gaussian assumption (often untrue)
- Need to estimate a large (2048x2048) covariance matrix
- Biased estimator<sup>1</sup>



Stein, George, et al. "Exposing flaws of generative model evaluation metrics and their unfair treatment of diffusion models." Advances in Neural Information Processing Systems, 36 (2024).

### CMMD

CLIP + Maximum Mean Discrepancy

- CLIP Embeddings
  - Trained on ~400M training images & complex scenes

Jayasumana, Sadeep, et al. "Rethinking fid: Towards a better evaluation metric for image generation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

# CMMD

CLIP + Maximum Mean Discrepancy

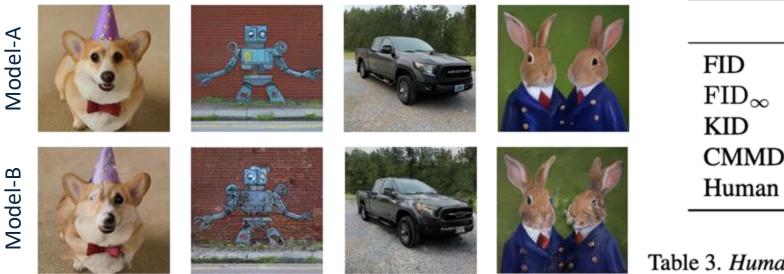
- CLIP Embeddings
  - Trained on ~400M training images & complex scenes
- MMD Distance

$$\hat{dist}_{MMD}^{2}(X,Y) = \frac{1}{m(m-1)} \sum_{i=1}^{m} \sum_{j \neq i}^{m} k(\mathbf{x}_{i},\mathbf{x}_{j}) + \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i}^{n} k(\mathbf{y}_{i},\mathbf{y}_{j}) - \frac{2}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} k(\mathbf{x}_{i},\mathbf{y}_{j})$$

- No distributional assumptions
- Sample efficient
- Unbiased estimator

Jayasumana, Sadeep, et al. "Rethinking fid: Towards a better evaluation metric for image generation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

### **CMMD:** Human Evaluation



| Model                  | Model-A | Model-B |
|------------------------|---------|---------|
| FID                    | 21.40   | 18.42   |
| $\mathrm{FID}_\infty$  | 20.16   | 17.19   |
| KID                    | 0.0105  | 0.0080  |
| CMMD                   | 0.721   | 0.951   |
| Human rater preference | 92.5%   | 6.9%    |

Table 3. Human evaluation. FID and KID contradict human evaluation while CMMD agrees. Lower is better for all metrics.

Jayasumana, Sadeep, et al. "Rethinking fid: Towards a better evaluation metric for image generation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

#### Measuring Model Improvements





22

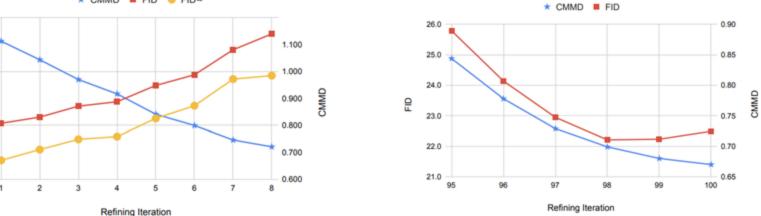
20

18

16

FID and FID»





Jayasumana, Sadeep, et al. "Rethinking fid: Towards a better evaluation metric for image generation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

# Agenda

- What are the current image evaluation metrics?
- What are the best/most popular evaluation metrics for T2I models?
- How do you design a good evaluation metric that reflects human preferences?

|                                             | Low-Level                        | High-Level                |
|---------------------------------------------|----------------------------------|---------------------------|
| Holistic<br>s(x)                            | Blurriness, No-<br>Reference IQA | PickScore,<br>ImageReward |
| Similarity<br>s(x, x <sub>ref</sub> )       | PSNR, SSIM, LPIPS,<br>DISTS      | DreamSim                  |
| Distribution<br>$s(p(x)); s(p(x), p_{ref})$ | FID, InceptionScore, CMMD        |                           |
| Text-Alignment<br>s(x, y <sub>ref</sub> )   | SOA, CLIPScore                   |                           |



#### Which patch is more similar to the middle?





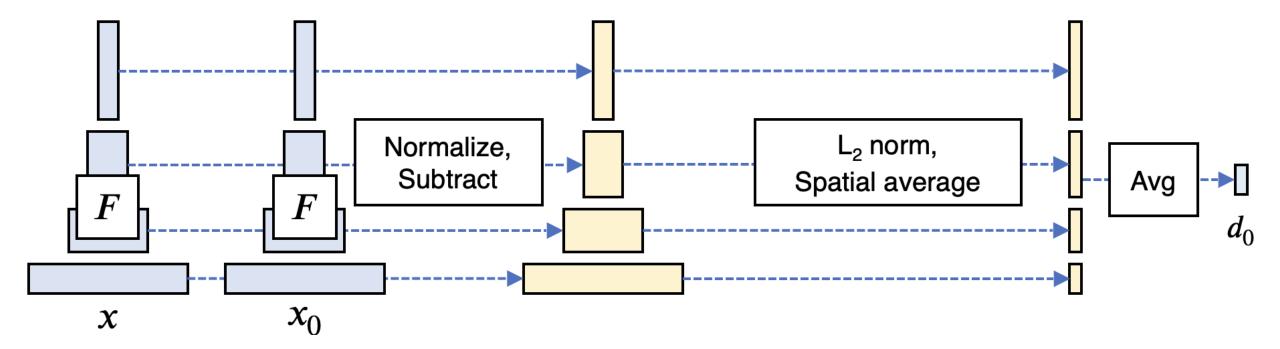




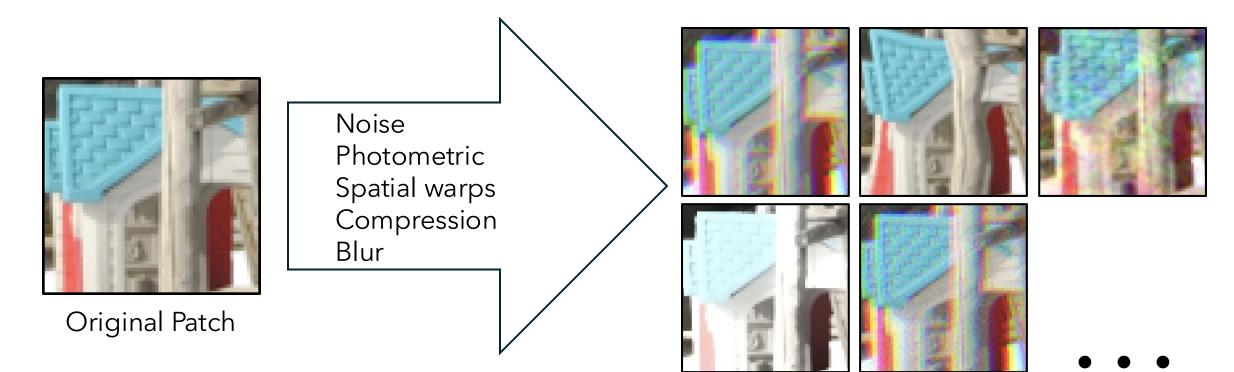
Humans L2/PSNR SSIM/FSIMc Deep Networks?



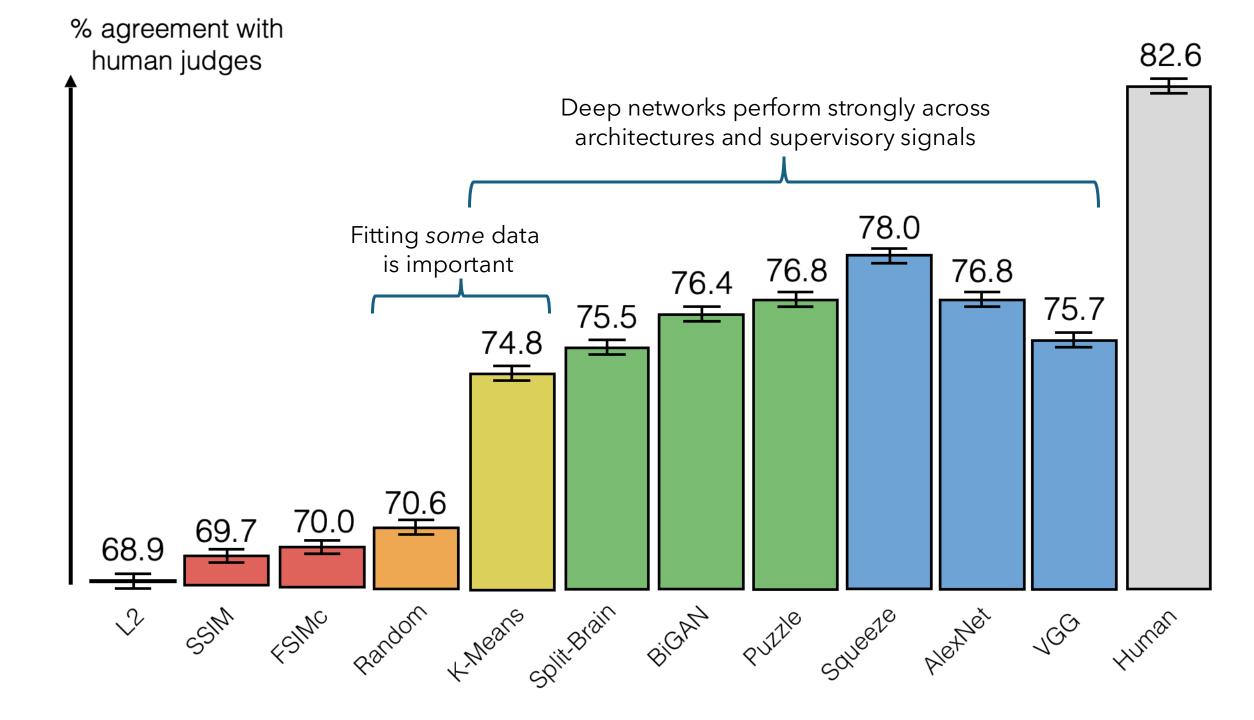
## Deep Networks as a Perceptual Metric



# Distortions



**Distorted Patches** 



# How different are these images?



Fu\*, Tamir\*, Sundaram\*, Chai, Zhang, Dekel, Isola. DreamSim: Learning New Dimensions of Human Visual Similarity using Synthetic Data. NeurIPS 2023

#### DreamSim: Learning New Dimensions of Human Visual Similarity using Synthetic Data



https://dreamsim-nights.github.io/



Stephanie Fu\*1



Netanel Y. Tamir\*<sup>2</sup>



Shobhita Sundaram\*<sup>1</sup>



Lucy Chai<sup>1</sup>

Richard Zhang<sup>3</sup>



Tali Dekel<sup>2</sup>



Phillip Isola<sup>1</sup>

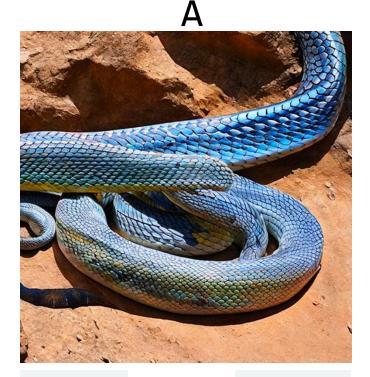
\*Equal contribution, order decided by random seed







#### Which image, A or B, is more similar to the reference?





#### Reference



В





#### Which image, A or B, is more similar to the reference?





Reference

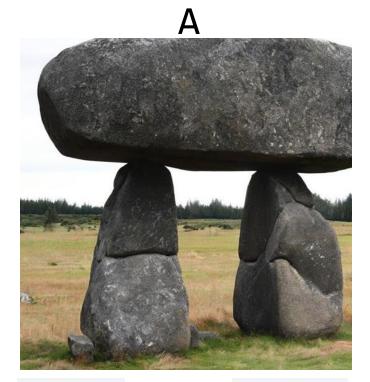


В





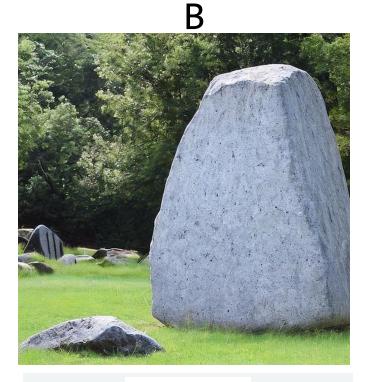
#### Which image, A or B, is more similar to the reference?





#### Reference







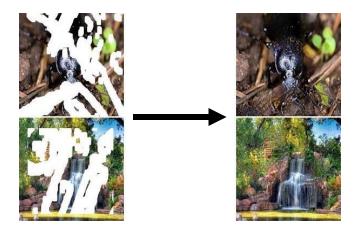




#### Image retrieval



#### Loss function



Liu et al, Image Inpainting for Irregular Holes Using Partial Convolutions, *ECCV 2018* 

#### Perceptual similarity datasets

We can improve f by finetuning on perceptual similarity datasets

• BAPPS – images & low-level variations (blurring, saturation, shifting, etc..)

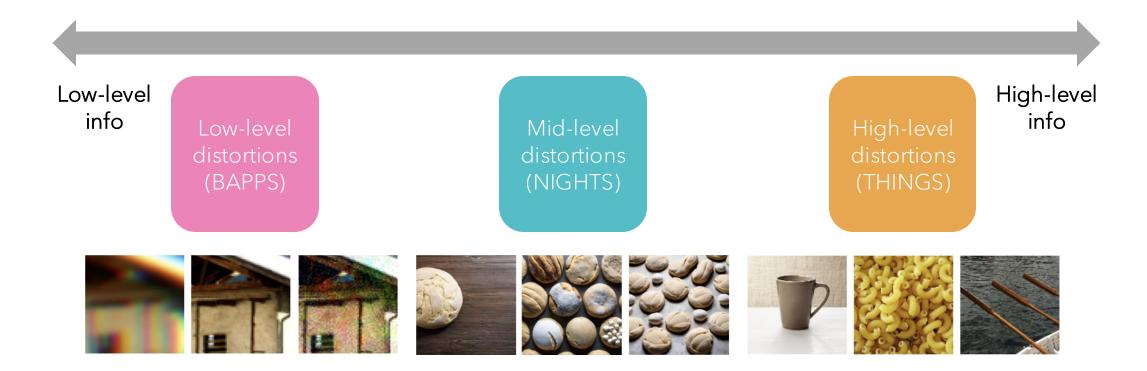


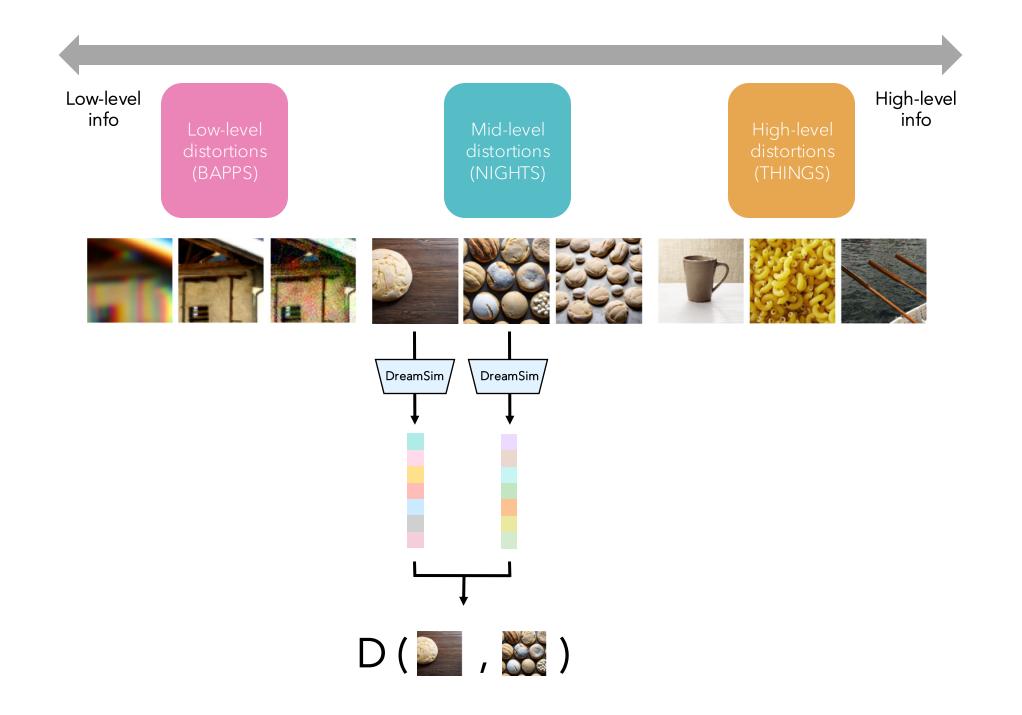
• THINGS – images depicting classes (more conceptual)



These datasets don't capture the variations we saw in our experiment!

#### Perceptual similarity datasets

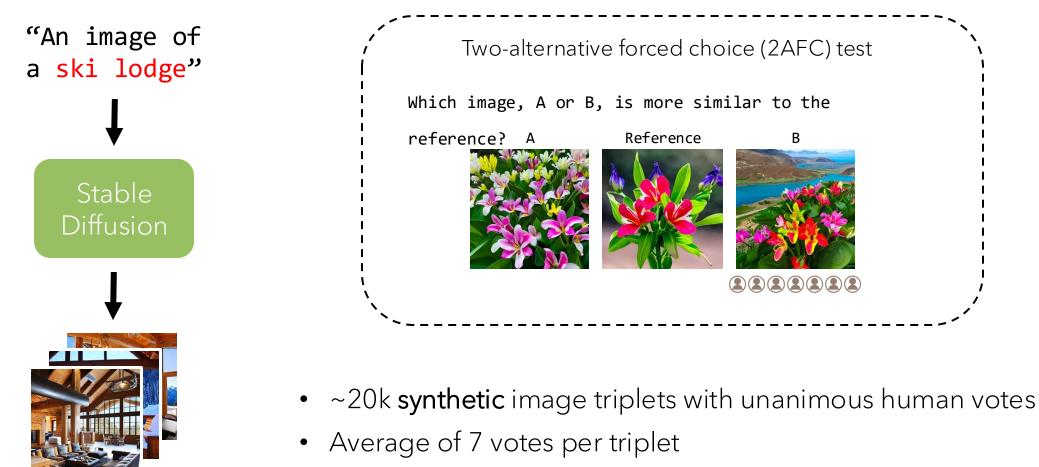




### NIGHTS - Novel Image Generations with Human-Tested Similarity

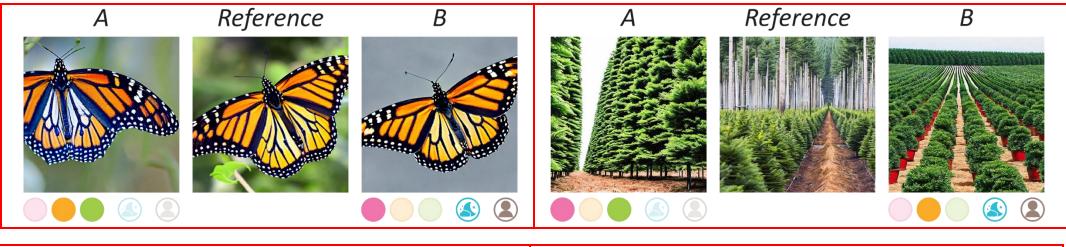
Goal: create a dataset of triplets which exhibit changes in **mid-level** information

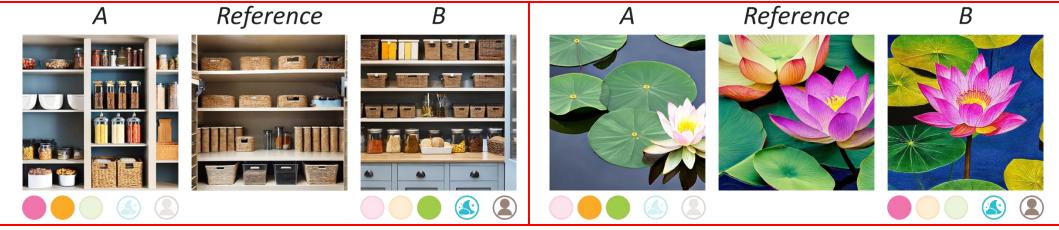
3 seeds



• Classes taken from ImageNet, Food-101, SUN397, etc.

## Examples of NIGHTS triplets

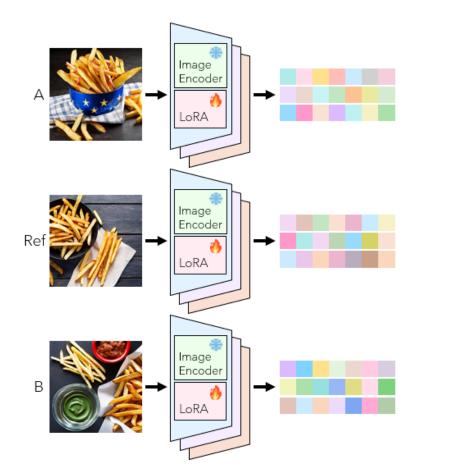




LPIPS DINO CLIP S DreamSim Humans

# Training & Inference

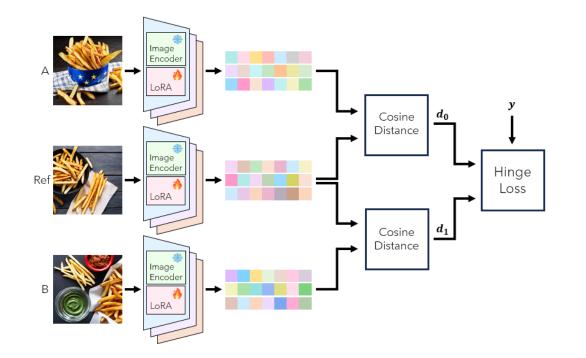
Training: use hinge loss between distances (= triplet loss between embeddings)

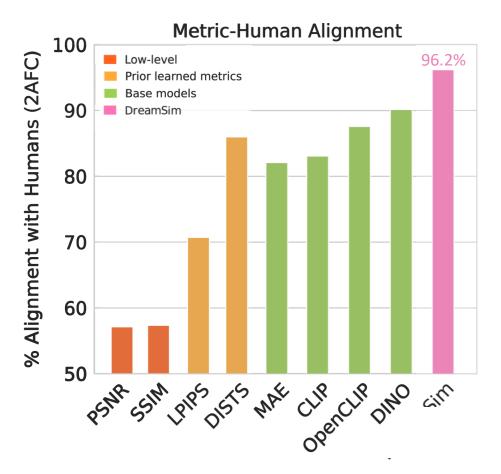


Use Low-Rank Adaptation (LoRA) Tunes 0.5% of ViT parameters

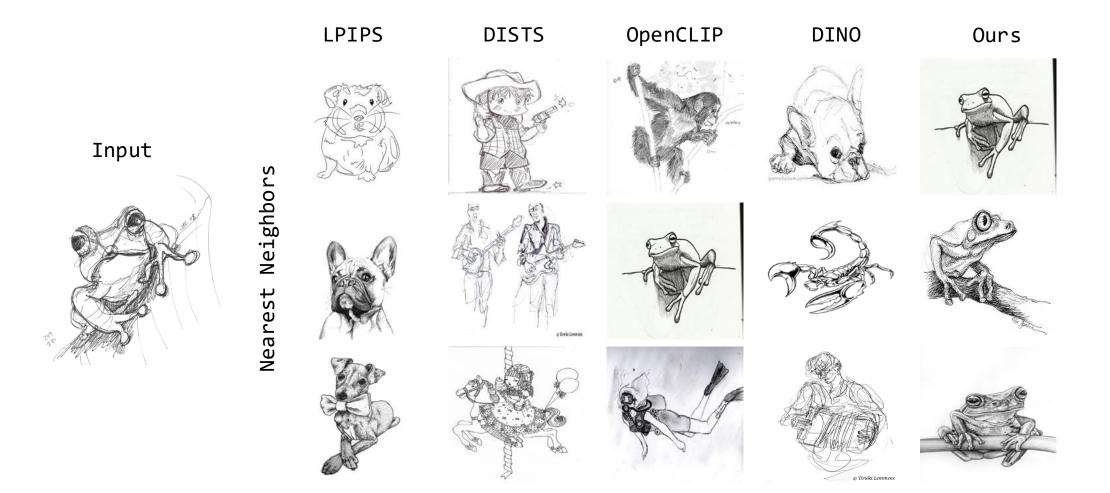
Inference: cosine distance between embeddings of two images

## Training & Inference





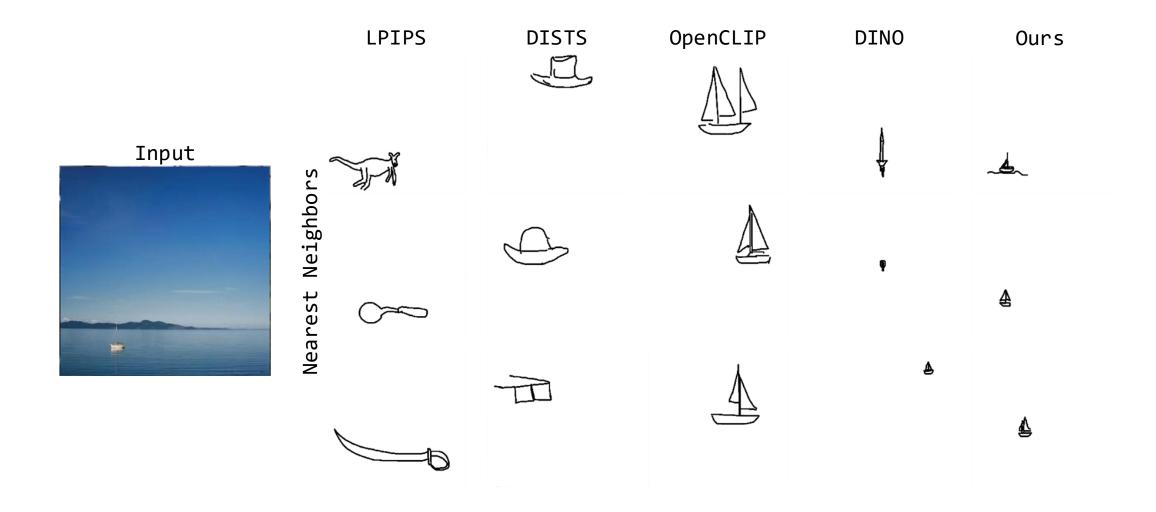
## Nearest Neighbors



## Nearest Neighbors (COCO + ImageNet-R)



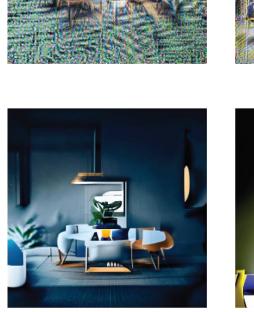
### Nearest neighbors (Photos → Sketches)



### Generation



# Optimization Diffusion Guided



OpenCLIP

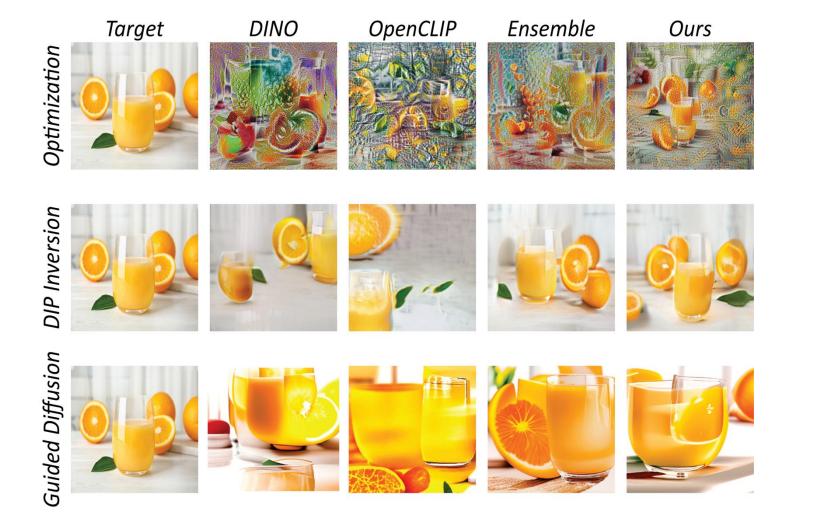








#### Inversion



# **Evaluating Generated Images**

RealFill: Reference-Driven Generation for Authentic Image Completion

LUMING TANG, Cornell University, US NATANIEL RUIZ, Google Research, US QINGHAO CHU, Google Research, US YUANZHEN LI, Google Research, US ALEKSANDER HOŁYŃSKI, Google Research, US DAVID E. JACOBS, Google Research, US BHARATH HARIHARAN, Cornell University, US YAEL PRITCH, Google Research, Israel NEAL WADHWA, Google Research, US KFIR ABERMAN, Snap Research, US

MICHAEL RUBINSTEIN, Google Research, US

Zhixu

SC





**Reference Images** 

American Culture

Nigerian Culture

**Target Image** 

Korean Culture

RealFill (Ours)



Customizing Text-to-Image Models with a Single Image Pair

ones<sup>1</sup> Sheng-Yu Wang<sup>1</sup> Nupur Kumari<sup>1</sup> David Bau<sup>2</sup> Jun-Yan Zhu<sup>1</sup>

age Generation

Every Image is Worth a Thousand Words: uantifying Originality in Stable Diffusion

Adi Haviv<sup>1</sup> Shahar Sarfaty<sup>1</sup> Uri Hacohen<sup>2</sup> Niva Elkin-Koren<sup>2</sup> Roi Livni<sup>3</sup> Amit H Bermano<sup>1</sup>



















(•)

1g<sup>1</sup>, Zhifei Zhang<sup>2</sup>, Zhe Lin<sup>2</sup>, Scott Cohen<sup>2</sup>, Brian Price<sup>2</sup>, ang<sup>2</sup>, Soo Ye Kim<sup>2</sup>, He Zhang<sup>2</sup>, Wei Xiong<sup>2</sup>, Daniel Aliaga<sup>1</sup> Purdue University<sup>1</sup>, Adobe Research<sup>2</sup>



(a) "Photo of a traditional building, in [Culture]"

# Conclusion

|                                                      | Low-Level                        | High-Level                |
|------------------------------------------------------|----------------------------------|---------------------------|
| Unary/Holistic<br>s(x)                               | Blurriness, No-<br>Reference IQA | PickScore,<br>ImageReward |
| Image Similarity<br>s(x, x <sub>ref</sub> )          | PSNR, SSIM, LPIPS,<br>DISTS      | DreamSim                  |
| Distribution<br>$s(p(x)); s(p(x), p_{ref})$          | InceptionScore, FID, CMMD        |                           |
| Cross-Modal<br>Similarity<br>s(x, y <sub>ref</sub> ) | SOA, CLIPScore                   |                           |

# What's Next?

- How can evaluation metrics be incorporated more directly into generation pipelines?
  - RLHF
  - Reward functions

# What's Next?

- How can evaluation metrics be incorporated more directly into generation pipelines?
  - RLHF
  - Reward functions
- Multiple different eval metrics v. one holistic eval metric?

# What's Next?

- How can evaluation metrics be incorporated more directly into generation pipelines?
  - RLHF
  - Reward functions
- Multiple different eval metrics v. one holistic eval metric?
- Cross-model alignment